docs on_gitbook chat on_slack codecov pypi

Quilt is a versioned data portal for AWS

Quilt in action

Who is Quilt for?

Quilt is for data-driven teams and offers features for coders (data scientists, data engineers, developers) and business users alike.

What does Quilt do?

Quilt manages data like code so that teams in machine learning, biotech, and analytics can experiment faster, build smarter models, and recover from errors.

How does Quilt work?

Quilt consists of a Python client, web catalog, lambda functions—all of which are open source—plus a suite of backend services and Docker containers orchestrated by CloudFormation.

The latter are available for private use under a paid license on

Use cases

  • Share data at scale. Quilt wraps AWS S3 to add simple URLs, web preview for large files, and sharing via email address (no need to create an IAM role).

  • Understand data better through inline documentation (Jupyter notebooks, markdown) and visualizations (Vega, Vega Lite)

  • Discover related data by indexing objects in ElasticSearch

  • Model data by providing a home for large data and models that don't fit in git, and by providing immutable versions for objects and data sets (a.k.a. "Quilt Packages")

  • Decide by broadening data access within the organization and supporting the documentation of decision processes through audit-able versioning and inline documentation


I - Performance and core services

  • Address performance issues with push (e.g. re-hash)

  • Provide Presto-DB-powered services for filtering package repos with SQL

  • Investigate and implement more efficient manifest formats (e.g. Parquet),

    that scale to 10M keys; consider abbreviated "fast manifests" for lazy browsing

  • Refactor s3://bucket/.quilt for improved listing and delete performance

II - CI/CD for data

  • Ability to fork/merge packages

  • Data quality monitoring

III - Storage agnostic (support Azure, GCP buckets)

  • Evaluate and as shims

  • Evaluate feasibility of on-prem local storage as a repo

IV - Cloud agnostic

  • Evaluate K8s and Terraform to replace CloudFormation

  • Shim lambdas (consider

  • Shim ElasticSearch (consider SOLR)

  • Shim IAM via RBAC